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1 Sups and Infs of Self-Adjoint Operators

1.1 Sups and infs of self-adjoint operators

For x ∈ B(H), we defined the left support `(x) = [xH] and the right support r(x) as the
projection onto (kerx)⊥. We had that `(x) = r(x∗) and `(x∗) = r(x). So if x = x∗, then
we can define `(x) = r(x) =: s(x), the support of x. We also had the following:

Proposition 1.1. The left and right support satisfy the following:

1. `(x) is the smallest projection e ∈ B(H) such that ex = x.

2. r(x) is the smallest projection f ∈ B(H) such that xf = x.

Definition 1.1. If {ei} is a family of projections in B(H), we denote by
∨

i ei the orthogonal

projection onto span{im ei}. Denote by
∧

i ei the orthogonal projection onto
⋂

i im ei

Proposition 1.2.
∨

i ei is the smallest projection e in B(H) such taht e ≥ ei for all i.∧
i ei is the largest projection e in B(M) such that e ≤ ei for all i.

Proposition 1.3. If {xi} ⊆ B(H)h is uniformly bounded (supi ‖xi‖ < ∞), then there is
a unique x = x∗ ∈ B(H) such that x ≥ xi for all i and such that if y = y∗ ≥ xi for all i,
then y ≤ x. Moreover, if {xi} is an increasing net (i ≤ j =⇒ xi ≤ xj), then xi

so−→ x.

Remark 1.1. This says that there is a least upper bound supi xi of {xi} in B(H)h. Simi-
larly, there exists some infi xi.

Proof. We can assume 0 ≤ xi ≤ 1; if K = supi ‖xi‖, then 1 ≥ 1
2K (xi + K1) ≥ 0. For

ξ ∈ H, denote F (ξ, ξ) = supi 〈xiξ, ξ〉. Then define F (ξ, η) by polarization:

F (ξ, η) =
1

4

3∑
i=0

ikF (ξ + ikη, ξ + ikη).
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Then |F (ξ, η)| ≤ ‖ξ‖‖η‖ means F is bounded. By the Riesz representation theorem, there
is a unique x ∈ B(H) such that ‖x‖ ≤ 1 and x ≥ 0 such that F (ξ, eta) = 〈xξ, η〉 for all
ξ, η ∈ H. So 〈x, ξ, ξ〉 = supi 〈xiξ, ξ〉.

To get xi
so−→ x, we want ‖(x− xi)ξ‖ → 0 for all ξ ∈ H. We have by functional calculus

that

‖(x− xi)ξ‖2 = ‖(x− xi)1/2(x− xi)1/2ξ‖2 ≤ ‖(x− xi)1/2‖2︸ ︷︷ ︸
≤‖x‖

〈(x− xi)ξ, ξ〉︸ ︷︷ ︸
→0

.

So xi
so−→ x.

Proposition 1.4. If e is an orthogonal projection, Spec(e) ⊆ {0, 1}.

Proof. Since e = e∗, Spec(e) ⊆ R. Since e2 = e, we must have Spec(e) ⊆ {0, 1}.

Proposition 1.5. Let {ei} be a family of projections. Then∨
i

ei = sup
i
ei,

∧
i

ei = inf
i
ei.

Proposition 1.6. Let {ei} be a family of projections. Then

∨
i

ei =
∨
J⊆I

J finite

eJ , eJ = s

(∑
i∈J

ei

)
,

and as J increases, eJ ↗
∨

i ei. In particular, if |I| <∞, then
∨

i ei = s(
∑

i∈I ei).

Remark 1.2. This says that (P(B(H)),≤), the projections on H with ≤, is a complete
lattice.

1.2 Consequences in von Neumann algebras

Proposition 1.7. If M is a C∗-algebra with unit, then any x ∈M is a linear combinations
of 4 unitary elements in M . In other words, M = spanU(M).

Proof. We have x = Rex+ i Imx. But if a = a∗ ∈ (M)1, then we can view it as a function
using functional calculus. Then we can split it up into the sum of t 7→ t + i

√
1− t2 and

t 7→ t− i
√

1− t2, which are unitary because their ranges are subsets of the unit circle.

If M = M∗, then [Mξ] ∈ M ′ for all ξ ∈ H. So if M is a von Neumann algebra, then
[M ′ξ] ∈ M ′′ = M . So to check that x ∈ M , it is necessary and sufficient to check that
u′x(u′)∗ = x for all u ∈ U(M ′).

Corollary 1.1. Let M be a von Neumann algebra. Then `(x), r(x) ∈M .
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We will prove this next time. Here is a consequence.

Corollary 1.2. Let M be a von Neumann algebra. If x ∈ M and x = va is the polar
decomposition, then v, a ∈M .

Proof. For any u′ ∈ U(M ′), we have u′x(u′)∗ = x. On the other hand, x = u′va(u′)∗ =
u′v(u′)∗u′a(u′)∗. Then v0 = u′v(u′)∗ is a partial isometry and a0 = u′a(u′)∗ ≥ 0. Then
a = (x∗x)1/2 ∈M . So we just need to show that v ∈M . We have that r(v0) = u′r(v)(u′)∗ =
u′r(x)(u′)∗. By uniqueness of the polar decomposition of x, v = v0 ∈M .

Corollary 1.3. Let M be a von Neumann algebra. If {xi} ⊆M is uniformly bounded and
increasing, then supi xi ∈M .

This is because xi ↑ supi x in the SO-topology.

Corollary 1.4. Let M be a von Neumann algebra. Then P(M), the projections in M
form a complete lattice.
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