Math 259A Lecture 10 Notes

Daniel Raban

October 18, 2019

1 Sups and Infs of Self-Adjoint Operators

1.1 Sups and infs of self-adjoint operators

For $x \in B(H)$, we defined the left support $\ell(x) = [xH]$ and the right support r(x) as the projection onto $(\ker x)^{\perp}$. We had that $\ell(x) = r(x^*)$ and $\ell(x^*) = r(x)$. So if $x = x^*$, then we can define $\ell(x) = r(x) = s(x)$, the support of x. We also had the following:

Proposition 1.1. The left and right support satisfy the following:

1. $\ell(x)$ is the smallest projection $e \in B(H)$ such that ex = x.

2. r(x) is the smallest projection $f \in B(H)$ such that xf = x.

Definition 1.1. If $\{e_i\}$ is a family of projections in $\mathcal{B}(H)$, we denote by $\bigvee_i e_i$ the orthogonal projection onto $\overline{\text{span}\{\text{im } e_i\}}$. Denote by $\bigwedge_i e_i$ the orthogonal projection onto $\bigcap_i \text{ im } e_i$

Proposition 1.2. $\bigvee_i e_i$ is the smallest projection e in B(H) such that $e \ge e_i$ for all i. $\bigwedge_i e_i$ is the largest projection e in $\mathcal{B}(M)$ such that $e \le e_i$ for all i.

Proposition 1.3. If $\{x_i\} \subseteq \mathcal{B}(H)_h$ is uniformly bounded $(\sup_i ||x_i|| < \infty)$, then there is a unique $x = x^* \in \mathcal{B}(H)$ such that $x \ge x_i$ for all i and such that if $y = y^* \ge x_i$ for all i, then $y \le x$. Moreover, if $\{x_i\}$ is an increasing net $(i \le j \implies x_i \le x_j)$, then $x_i \stackrel{so}{\longrightarrow} x$.

Remark 1.1. This says that there is a least upper bound $\sup_i x_i$ of $\{x_i\}$ in $\mathcal{B}(H)_h$. Similarly, there exists some $\inf_i x_i$.

Proof. We can assume $0 \le x_i \le 1$; if $K = \sup_i ||x_i||$, then $1 \ge \frac{1}{2K}(x_i + K\mathbf{1}) \ge 0$. For $\xi \in H$, denote $F(\xi, \xi) = \sup_i \langle x_i \xi, \xi \rangle$. Then define $F(\xi, \eta)$ by polarization:

$$F(\xi,\eta) = \frac{1}{4} \sum_{i=0}^{3} i^{k} F(\xi + i^{k} \eta, \xi + i^{k} \eta)$$

Then $|F(\xi,\eta)| \leq ||\xi|| ||\eta||$ means F is bounded. By the Riesz representation theorem, there is a unique $x \in \mathcal{B}(H)$ such that $||x|| \leq 1$ and $x \geq 0$ such that $F(\xi, eta) = \langle x\xi, \eta \rangle$ for all $\xi, \eta \in H$. So $\langle x, \xi, \xi \rangle = \sup_i \langle x_i \xi, \xi \rangle$.

To get $x_i \xrightarrow{\text{so}} x$, we want $||(x - x_i)\xi|| \to 0$ for all $\xi \in H$. We have by functional calculus that

$$\|(x-x_i)\xi\|^2 = \|(x-x_i)^{1/2}(x-x_i)^{1/2}\xi\|^2 \le \underbrace{\|(x-x_i)^{1/2}\|^2}_{\le \|x\|} \underbrace{\langle (x-x_i)\xi,\xi\rangle}_{\to 0}.$$

So $x_i \xrightarrow{so} x$.

Proposition 1.4. If e is an orthogonal projection, $\text{Spec}(e) \subseteq \{0, 1\}$.

Proof. Since $e = e^*$, Spec $(e) \subseteq \mathbb{R}$. Since $e^2 = e$, we must have Spec $(e) \subseteq \{0, 1\}$.

Proposition 1.5. Let $\{e_i\}$ be a family of projections. Then

$$\bigvee_i e_i = \sup_i e_i, \qquad \bigwedge_i e_i = \inf_i e_i.$$

Proposition 1.6. Let $\{e_i\}$ be a family of projections. Then

$$\bigvee_{i} e_{i} = \bigvee_{\substack{J \subseteq I \\ J \text{ finite}}} e_{J}, \qquad e_{J} = s\left(\sum_{i \in J} e_{i}\right),$$

and as J increases, $e_J \nearrow \bigvee_i e_i$. In particular, if $|I| < \infty$, then $\bigvee_i e_i = s(\sum_{i \in I} e_i)$.

Remark 1.2. This says that $(\mathcal{P}(B(H)), \leq)$, the projections on H with \leq , is a complete lattice.

1.2 Consequences in von Neumann algebras

Proposition 1.7. If M is a C^{*}-algebra with unit, then any $x \in M$ is a linear combinations of 4 unitary elements in M. In other words, $M = \operatorname{span} U(M)$.

Proof. We have x = Re x + i Im x. But if $a = a^* \in (M)_1$, then we can view it as a function using functional calculus. Then we can split it up into the sum of $t \mapsto t + i\sqrt{1-t^2}$ and $t \mapsto t - i\sqrt{1-t^2}$, which are unitary because their ranges are subsets of the unit circle. \Box

If $M = M^*$, then $[M\xi] \in M'$ for all $\xi \in H$. So if M is a von Neumann algebra, then $[M'\xi] \in M'' = M$. So to check that $x \in M$, it is necessary and sufficient to check that $u'x(u')^* = x$ for all $u \in U(M')$.

Corollary 1.1. Let M be a von Neumann algebra. Then $\ell(x), r(x) \in M$.

We will prove this next time. Here is a consequence.

Corollary 1.2. Let M be a von Neumann algebra. If $x \in M$ and x = va is the polar decomposition, then $v, a \in M$.

Proof. For any $u' \in U(M')$, we have $u'x(u')^* = x$. On the other hand, $x = u'va(u')^* = u'v(u')^*u'a(u')^*$. Then $v_0 = u'v(u')^*$ is a partial isometry and $a_0 = u'a(u')^* \ge 0$. Then $a = (x^*x)^{1/2} \in M$. So we just need to show that $v \in M$. We have that $r(v_0) = u'r(v)(u')^* = u'r(x)(u')^*$. By uniqueness of the polar decomposition of $x, v = v_0 \in M$.

Corollary 1.3. Let M be a von Neumann algebra. If $\{x_i\} \subseteq M$ is uniformly bounded and increasing, then $\sup_i x_i \in M$.

This is because $x_i \uparrow \sup_i x$ in the SO-topology.

Corollary 1.4. Let M be a von Neumann algebra. Then $\mathcal{P}(M)$, the projections in M form a complete lattice.