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1 Sups and Infs of Self-Adjoint Operators

1.1 Sups and infs of self-adjoint operators

For x € B(H), we defined the left support ¢(x) = [zH] and the right support r(z) as the
projection onto (ker x)*~. We had that £(x) = r(z*) and £(x*) = r(z). So if x = x*, then
we can define ¢(x) = r(x) =: s(x), the support of z. We also had the following:

Proposition 1.1. The left and right support satisfy the following:
1. £(x) is the smallest projection e € B(H) such that ex = x.
2. r(x) is the smallest projection f € B(H) such that zf = x.

Definition 1.1. If {e;} is a family of projections in B(H ), we denote by \/, e; the orthogonal
projection onto span{ime;}. Denote by A, e; the orthogonal projection onto (), ime;

Proposition 1.2. \/,e; is the smallest projection e in B(H) such taht e > e; for all i.
N\; €i is the largest projection e in B(M) such that e < e; for all i.

Proposition 1.3. If {z;} C B(H), is uniformly bounded (sup; ||z;|| < oo), then there is
a unique x = x* € B(H) such that x > x; for all i and such that if y = y* > x; for all i,
then y < x. Moreover, if {x;} is an increasing net (i < j = x; < xj), then x; 2 2.

Remark 1.1. This says that there is a least upper bound sup; x; of {z;} in B(H ). Simi-
larly, there exists some inf; x;.

Proof. We can assume 0 < z; < 1; if K = sup; ||lz;|, then 1 > s (2; + K1) > 0. For
€ € H, denote F(&, &) = sup,; (x;€,£). Then define F(§,n) by polarization:
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F(&m) = § SF(E+ a6+ i),
=0



Then |F(&,7)] < ||&]|lln|| means F' is bounded. By the Riesz representation theorem, there
is a unique x € B(H) such that ||z| < 1 and 2 > 0 such that F (&, eta) = (x&,n) for all

5777 € H. So <g(';7§7§> = sup; <x’£€7§>
To get ©; — x, we want ||(z — x;)&|| — 0 for all £ € H. We have by functional calculus
that

(e — 2)€ll = ll(@ = 2:)' (2 — @) €| < ||(@ = 20)' 2| (@ = 20)€,€) -

<lll —0

So z; - x. O
Proposition 1.4. If e is an orthogonal projection, Spec(e) C {0,1}.
Proof. Since e = e*, Spec(e) C R. Since e? = e, we must have Spec(e) C {0, 1}. O

Proposition 1.5. Let {e;} be a family of projections. Then
\i/ei:sgpei, /i\ei:irilfei.

Proposition 1.6. Let {e;} be a family of projections. Then

Vem \/ en eJ=s<Zei>,

% JCI ieJ
J finite
and as J increases, ey /* \/; e;. In particular, if |[I| < oo, then \/;e; = s(> ;.1 €i)-

Remark 1.2. This says that (P(B(H)), <), the projections on H with <, is a complete
lattice.

1.2 Consequences in von Neumann algebras

Proposition 1.7. If M is a C*-algebra with unit, then any x € M is a linear combinations
of 4 unitary elements in M. In other words, M = spanU(M).

Proof. We have x = Rex +iImz. But if a = a* € (M);, then we can view it as a function
using functional calculus. Then we can split it up into the sum of ¢ — ¢ + iv/1 — 2 and
t — t —iy/1 — t2, which are unitary because their ranges are subsets of the unit circle. [J

If M = M*, then [M&] € M’ for all £ € H. So if M is a von Neumann algebra, then
[M'¢] € M" = M. So to check that € M, it is necessary and sufficient to check that
wa(u')* =z for all u € U(M").

Corollary 1.1. Let M be a von Neumann algebra. Then €(x),r(x) € M.



We will prove this next time. Here is a consequence.

Corollary 1.2. Let M be a von Neumann algebra. If x € M and x = va is the polar
decomposition, then v,a € M.

Proof. For any v’ € U(M'), we have v/z(u')* = . On the other hand, x = v'va(u)* =
wo(u)*u'a(u')*. Then vy = v'v(u')* is a partial isometry and ag = v'a(v’)* > 0. Then
a = (z*z)"/? € M. So we just need to show that v € M. We have that r(vg) = u/r(v)(u')* =
u'r(x)(u')*. By uniqueness of the polar decomposition of z, v = vg € M. O

Corollary 1.3. Let M be a von Neumann algebra. If {x;} C M is uniformly bounded and
increasing, then sup; x; € M.

This is because x; T sup;  in the SO-topology.

Corollary 1.4. Let M be a von Neumann algebra. Then P(M), the projections in M
form a complete lattice.



